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One way to think about vision: inverse optics

Laws of physics “generate” 2D images on 

our retinae from 3D scenes  

(forward optics / rendering)

Starting point to think about visual 

perception: we want to infer the 3D scene 

from the 2D retinal images:  

inverse optics!

But: Inverse optics is mathematically 

impossible.

light source 

(e.g. sun light)

object reflectance

amount of light 

entering the eye 

is a product of  

light source intensity 

and object reflectance
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Statistics is the science of learning from data. … [ML] is the science of 

learning from data. These fields are identical in intent although they differ in 

their history, conventions, emphasis and culture. (Wasserman, 2014)

ML is a comparatively new sub-branch of computational statistics jointly 

developed in computer science and statistics.

ML is inference performed by computers based on past observations and 

learning algorithms: ML algorithms are mainly concerned with discovering 

hidden structure in data in order to predict novel data—exploratory 

methods, to get things done!

“Classical” statistics typically is concerned with making precise probabilistic 

statements about known data coming from known distributions, i.e. interest 

in accurate models of data!



What is the difference between statistics and machine learning?

Machine Learning is AI people doing data analysis. 

Data Mining is database people doing data analysis. 

Applied Statistics is statisticians doing data analysis 

Infographics is Graphic Designers doing data analysis. 

Data Journalism is Journalists doing data analysis. 

Econometrics is Economists doing data analysis 

(and here you can win a Nobel Prize). 

Psychometrics is Psychologists doing data analysis. 

Chemometrics and Cheminformatics are Chemists doing data analysis. 

Bioinformatics is Biologists doing data analysis.

30Aleks Jakulin, https://www.quora.com/What-is-the-difference-between-statistics-and-machine-learning
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What is the difference between statistics and machine learning? (cont’d)

… if you look at what the goals both fields are trying to achieve, you see that 

there is actually quite a big difference: 

Statistics is interested in learning something about data, for example, which 

have been measured as part of some biological experiment. … . But the 

overall goal is to arrive at new scientific insight based on the data. 

In Machine Learning, the goal is to solve some complex computational task by 

“letting the machine learn”. Instead of trying to understand the problem well 

enough to be able to write a program which is able to perform the task (for 

example, handwritten character recognition), you instead collect a huge 

amount of examples of what the program should do, and then run an 

algorithm which is able to perform the task by learning from the examples. 

Often, the learning algorithms are statistical in nature. But as long as the 

prediction works well, any kind of statistical insight into the data is not 

necessary.

31Mikio Braun, https://www.quora.com/What-is-the-difference-between-statistics-and-machine-learning

https://www.quora.com/What-is-the-difference-between-statistics-and-machine-learning


What is the difference between statistics and machine learning? (cont’d)

The primary differences are perhaps the types of the problems attacked, and 

the goal of learning.  

At the risk of data and models oversimplification, one could say that in 

statistics a prime focus is often in understanding the data and relationships 

in terms of models giving approximate summaries such as linear relations or 

independencies. In contrast, the goals in algorithms and machine learning are 

primarily to make predictions as accurately as possible and predictions to 

understand the behaviour of learning algorithms.  

These differing objectives have led to different developments in the two 

fields: for example, neural network algorithms have been used extensively as 

black-box function approximators in machine learning, but to many 

statisticians they are less than satisfactory, because of the difficulties in 

interpreting such models.

32
Franck Dernoncourt, https://www.quora.com/What-is-the-difference-between-statistics-and-machine-learning

https://www.quora.com/What-is-the-difference-between-statistics-and-machine-learning
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Semi-supervised learning is a class algorithms making use of unlabeled data for training—

typically a small amount of labeled data with a large amount of unlabeled data. Semi-supervised 

learning falls between unsupervised learning (without any labeled training data) and supervised 

learning (with completely labeled training data).
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this tumour cancerous?”, “Does this cookie meet our quality standards?”, and 

so on.

Regression: Problems where the value being predicted falls somewhere on a 

continuous spectrum. These systems help us with questions of “How much?” 

or “How many?”

Support vector machine (SVM) is a supervised classification algorithm

Neural networks, including the now so popular convolutional deep neural 

networks (DNNs), are supervised algorithms, too, typically however for multi-

class classification
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Success of supervised classification in ML

ML—and in particular kernel methods as well as very recently so-called deep 

neural networks (DNNs)—have proven successful whenever there is an 

abundance of empirical data but a lack of explicit knowledge how the data 

were generated:

• Predict credit card fraud from patterns of money withdrawals.

• Predict toxicity of novel substances (biomedical research).

• Predict engine failure in airplanes.

• Predict what people will google next.

• Predict what people want to buy next at amazon.
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Learning Problem in General

Training examples (x1,y1),…,(xm,ym)

Task: given a new x, find the new y 

strong emphasis on prediction, that is, generalization!

Idea: (x,y) should look “similar” to the training examples

Required: similarity measure for (x,y)

Much of creativity and difficulty in kernel-based ML: Find suitable similarity 

measures for all the practical problems discussed before, e.g. credit card 

fraud, toxicity of novel molecules, gene sequences, … . 

When are two molecules, with different atoms, structure, configuration etc. 

the same? When are two strings of letters or sentences similar? What would 

be the mean, or the variance of strings? Of molecules?

Very recent deep neural network success: 

The network learns the right similarity measure from the data!
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The Support Vector Machine 

Computer algorithm that learns by example to assign labels to objects

Successful in handwritten digit recognition, credit card fraud detection, 

classification of gene expression profiles etc.

Essence of the SVM algorithm requires understanding of: 

 

i. the separating hyperplane 

ii. the maximum-margin hyperplane 

iii. the soft margin 

iv. the kernel function

For SVMs and machine learning in general: 

i. regularisation 

ii. cross-validation
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Two Genes and Two Forms of Leukemia 

(microarrays deliver thousands of genes, but hard to draw ...)



1566 U NU D N U HN G

5

ft r

r f t

MARCKSL1

MARCKSL1 MARCKSL1 MARCKSL1 MARCKSL1

0 2 4 6 8 10 12

MARCKSL1 MARCKSL1

HOXA9

Z
Y

X

12

10

8

6

4

2

0

Z
Y

X

b

Z
Y

X

f

Z
Y

X

Z
Y

X

ZYX

Z
Y

X

r S S A

A E A S

A

A A A

f A

A E A S

A A S

1 000

P E

©
2

0
0
6
 N

a
tu

re
 P

u
b

li
s

h
in

g
 G

ro
u

p
  

h
tt

p
:/

/w
w

w
.n

a
tu

re
.c

o
m

/n
a

tu
re

b
io

te
c
h

n
o

lo
g

y

Separating Hyperplane



1566 U NU D N U HN G

5

ft r

r f t

MARCKSL1

MARCKSL1 MARCKSL1 MARCKSL1 MARCKSL1

0 2 4 6 8 10 12

MARCKSL1 MARCKSL1

HOXA9

Z
Y

X

Z
Y

X
Z

Y
X

f

Z
Y

X

Z
Y

X

c

ZYX

Z
Y

X

r S S A

A E A S

A

A A A

f A

A E A S

A A S

1 000

P E

©
2

0
0
6
 N

a
tu

re
 P

u
b

li
s

h
in

g
 G

ro
u

p
  

h
tt

p
:/

/w
w

w
.n

a
tu

re
.c

o
m

/n
a
tu

re
b

io
te

c
h

n
o

lo
g

y

Separating Hyperplane in 1D — a Point
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Many Potential Separating Hyperplanes ... 

(all “optimal” w.r.t. some loss function)
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What to Do With Outliers?
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The Kernel Function in 1D
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Mapping the 1D data to 2D (here: squaring)



Not linearly separable in input space ...
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Figure 3. The crosses and the circles cannot be separated by a

linear perceptron in the plane.
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Map from 2D to 3D ...
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... linear separability in 3D 

(actually: data still 2D, “live” on a manifold of original D!)
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Figure 4. The crosses and circles from Figure 3 can be mapped

to a three-dimensional space in which they can be separated by a
linear perceptron.
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Projecting the 4D Hyperplane Back into 2D Input Space
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SVM magic? 

For any consistent dataset there is a kernel that allows perfect 

separation of the data

Why bother with soft-margins? 

The so-called curse of dimensionality: as the number of variables 

considered increases, the number of possible solutions increases 

exponentially … overfitting looms large!
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Overfitting
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Regularisation & Cross-validation

Find a compromise between complexity and classification performance, 

i.e. kernel function and soft-margin

Penalise complex functions via a regularisation term or regulariser

Cross-validate the results (leave-one-out or 10-fold typically used)
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SVM Summary

Kernel essential—best kernel typically found by trial-and-error and 

experience with similar problems etc.

Inverting not always easy; need approximations etc. (i.e. science hard, 

engineering easy as they don’t care as long as it works!)

Theoretically sound and a convex optimisation (no local minima)

Choose between: 

• complicated decision functions and training (neural networks) 

• clear theoretical foundation (best possible generalisation), convex 

optimisation but need to trade-off complexity versus soft-margin and skilful 

selection of the “right” kernel. 

(= “correct” non-linear similarity measure for the data!)
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Much of the success of modern machine learning methods can attributed to three ideas: 

1. Regularisation. Given are N “datapoints” (xi,yi) with …  

 

  

    

   and a model f . Then the “error” between data and model is:  

   In machine learning we not only take the “error” between model and data into account but 

   in addition a measure of the complexity of the model f:

x = x1, ..., xN

y = y1, ..., yN

E(y, f(x))

E(y, f(x)) + λR(f)
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Regularisation, Cross-Validation and Kernels

Much of the success of modern machine learning methods can attributed to three ideas: 

1. Regularisation. Given are N “datapoints” (xi,yi) with …  

 

  

    

   and a model f . Then the “error” between data and model is:  

   In machine learning we not only take the “error” between model and data into account but 

   in addition a measure of the complexity of the model f: 

2. Cross-Validation. Regularisation is related to the prior in Bayesian statistics. Unlike 

    in Bayesian statistics the trade-off between small error and low-complexity of the 

    model is controlled by a parameter λ— this is optimized using cross-validation. 

3. Non-linear mapping with linear separation. 

    True for kernels as well as DNNs.

x = x1, ..., xN

y = y1, ..., yN

E(y, f(x))

E(y, f(x)) + λR(f)



❸



What changed vision research in 2012?



What changed vision research in 2012?

ImageNet challenge: 1000 categories, 1.2 million training images.



What changed vision research in 2012?

ImageNet challenge: 1000 categories, 1.2 million training images.

AlexNet by Krizhevsky, Sutskever & Hinton (2012) appears on the stage, and 

basically reduces the prediction error by nearly 50%:



What changed vision research in 2012?

ImageNet challenge: 1000 categories, 1.2 million training images.

AlexNet by Krizhevsky, Sutskever & Hinton (2012) appears on the stage, and 

basically reduces the prediction error by nearly 50%:

























Vision
Deep CNN

Language
Generating RNN

A group of people 
shopping at an outdoor 

market.

There are many 
vegetables at the 

fruit stand.



A woman is throwing a frisbee in a park.

A little girl sitting on a bed with a teddy bear. A group of people sitting on a boat in the water. A giraffe standing in a forest with
trees in the background.

A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background
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Problem of finding a sharp image from a blurry photo:

Blind Image Deconvolution

modified from Michael Hirsch



from Michael Hirsch
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Sequence of Blurry Photos (Image Burst)

from Michael Hirsch



Result of Proposed Image Burst Deblurring Method

from Michael Hirsch



EnhanceNet: Photo-realistic Super-resolution

from Michael Hirsch



EnhanceNet: Photo-realistic Super-resolution

from Michael Hirsch



from Michael Hirsch



from Michael Hirsch



Autonomous cars



Autonomous cars



Fundamentals of Neural Networks

Interest in shallow, 2-layer artificial neural networks (ANN)—so-called 

perceptrons—began in the late 1950s and early 60s (Frank Rosenblatt), 

based on Warren McCulloch and Walter Pitts’s as well Donald Hebb’s ideas 

of computation by neurons from the 1940s.



https://kimschmidtsbrain.files.wordpress.com/2015/10/perceptron.jpg



http://cambridgemedicine.org/sites/default/files/styles/large/public/field/
image/DonaldOldingHebb.jpg?itok=py9Uh4D5
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of computation by neurons from the 1940s.

Second wave of ANN research and interest in psychology—often termed 

connectionism—after the publication of the parallel distributed processing 

(PDP) books by David Rumelhart and James McClelland (1986), using the 

backpropagation algorithm as a learning rule for multi-layer networks.

Three-layer network with (potentially infinitely many) hidden units in the 

intermediate layer is a universal function approximator (Kurt Hornik, 1991).

Non-convex optimization problems during backpropagation training, and lack 

of data and computing power limited the usefulness of the ANNs:

Universal function approximator in theory, but in practice three-layer ANNs 

could often not successfully solve complex problems.
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Breakthrough again with so-called deep neural networks or DNNs, widely 

known since the 2012 NIPS-paper by Alex Krizhevsky et al.
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Breakthrough again with so-called deep neural networks or DNNs, widely 

known since the 2012 NIPS-paper by Alex Krizhevsky et al.

DNN: loose terminology to refer to networks with at least two hidden or 

intermediate layers, typically at least five to ten (or up to dozens):

1. Massive increase in labelled training data (“the internet”), 

2. computing power (GPUs), 

3. simple non-linearity (ReLU) instead of sigmoid, 

4. convolutional rather than fully connected layers, 

and 

5. weight sharing across deep layers  

appear to be the critical ingredients for the current success of DNNs, and 

makes them the current method of choice in ML, particular in application.

At least superficially DNNs appear to be similar to the human object 

recognition system: convolutions (“filters”, “receptive fields”) followed by 

non-linearities and pooling is thought to be the canonical computation of 

cortex, at least within sensory areas.
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Example: VGG-16

VGG16 by Simonyan & Zisserman (2014); 92.7% top-5 test accuracy on ImageNet
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http://scs.ryerson.ca/~aharley/vis/conv/flat.html



Deep Neural Networks (DNNs)
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Adversarial attacks?

Szegedy et al. (2014) 



Adversarial examples? (cont’d)

Reese 

Witherspoon 

Sharif et al. (2016)
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Witherspoon 
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Crowe

Sharif et al. (2016)
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Adversarial examples? (cont’d)

Sharif et al. (2016)



DARPA Challenge 2015
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Boston Dynamics 2017



Boston Dynamics 2017



Human versus artificial intelligence

We learn unsupervised or semi-supervised, sometimes reinforcement, very 

rarely supervised (school, University) – all successful AI is currently 

supervised only, i.e. only when the correct answer is known! 

We can do lots of things using the same network (or a set of closely coupled 

networks) — all DNNs are typically only good at one or few tasks.
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Gesellschaftliche Herausforderungen

Arbeitsbedingungen und Arbeitsmarkt: 

Einsatz von Technologie macht die Arbeit “einfacher” – typischerweise fällt die 

Notwendigkeit einer Lehre oder Ausbildung weg. 

Die Folge sind sinkende Löhne … schließlich kann “jeder” die Arbeit machen.
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Arbeitslosigkeit?
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Arbeitslosigkeit?

Autonome Fahrzeuge – womöglich kurz nach der Erlaubnis, solche 
Fahrzeuge im Straßenverkehr zu haben, die Pflicht, nur noch damit zu 
fahren.
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Roboter in der Post? Abfallwirtschaft? Logistik? 
Deutsche Post DHL hat 211.000 Mitarbeiter in Deutschland (Stand 2016), 
in der Ver- und Entsorgung arbeiteten 2014 ca. 155.000 Menschen, als 
Reinigungskräfte 2014 offiziell fast 760.000; Amazon beschäftigt alleine 
in D 23.000 Menschen in Logistik-Zentren: 1.150.000 Arbeitsplätze!

Humanoide Roboter in der Pflege? 
2014 arbeiteten in der Alten- und Krankenpflege in D über 900.000 
Menschen … .
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Gesellschaftliche Herausforderungen

Arbeitsbedingungen und Arbeitsmarkt: 

Einsatz von Technologie macht die Arbeit “einfacher” – typischerweise fällt die 

Notwendigkeit einer Lehre oder Ausbildung weg. 

Die Folge sind sinkende Löhne … schließlich kann “jeder” die Arbeit machen. 

Politik und Gesellschaft: 

Leben in der selben Wirklichkeit? Personalisierte Information in sozialen Medien 

und der Verlust breit und kontrovers informierender Quellen – weit verbreiteter 

Konsum von Propaganda.
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Propaganda

Propaganda ist der Versuch der gezielten Beeinflussung des Denkens, 

Handelns und Fühlens von Menschen. Wer Propaganda betreibt, verfolgt 

damit immer ein bestimmtes Interesse. … Charakteristisch für Propaganda 

ist, dass sie die verschiedenen Seiten einer Thematik nicht darlegt und 

Meinung und Information vermischt. Wer Propaganda betreibt, möchte 

nicht diskutieren und mit Argumenten überzeugen, sondern mit allen Tricks 

die Emotionen und das Verhalten der Menschen beeinflussen, beispielsweise 

indem sie diese ängstigt, wütend macht oder ihnen Verheißungen ausspricht. 

Propaganda nimmt dem Menschen das Denken ab und gibt ihm stattdessen 

das Gefühl, mit der übernommenen Meinung richtig zu liegen. 

 

Quelle: Bundeszentrale für politische Bildung 
www.bpb.de
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Gesellschaftliche Herausforderungen

Arbeitsbedingungen und Arbeitsmarkt: 

Einsatz von Technologie macht die Arbeit “einfacher” – typischerweise fällt die 

Notwendigkeit einer Lehre oder Ausbildung weg. 

Die Folge sind sinkende Löhne … schließlich kann “jeder” die Arbeit machen. 

Politik und Gesellschaft: 

Leben in der selben Wirklichkeit? Personalisierte Information in sozialen Medien 

und der Verlust breit und kontrovers informierender Quellen – weit verbreiteter 

Konsum von Propaganda. 

Privatsphäre? Veränderung (zwischenmenschlicher) Kommunikation?
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Weapons of Mass Destruction (WMDs)

https://www.wired.com/images_blogs/dangerroom/2011/03/powell_un_anthrax.jpg





Gesellschaftliche Herausforderungen

Arbeitsbedingungen und Arbeitsmarkt: 

Einsatz von Technologie macht die Arbeit “einfacher” – typischerweise fällt die 

Notwendigkeit einer Lehre oder Ausbildung weg. 

Die Folge sind sinkende Löhne … schließlich kann “jeder” die Arbeit machen. 

Politik und Gesellschaft: 

Leben in der selben Wirklichkeit? Personalisierte Information in sozialen Medien 

und der Verlust breit und kontrovers informierender Quellen – weit verbreiteter 

Konsum von Propaganda. 

Privatsphäre? Veränderung (zwischenmenschlicher) Kommunikation? 

Naïver Glaube an die Objektivität von Algorithmen 

… und Ranglisten, die Vermessung und Quantifizierung des Lebens: 

China, z.B., plant das Social Credit System einzuführen.
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Gesellschaftliche Herausforderungen

Arbeitsbedingungen und Arbeitsmarkt: 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und der Verlust breit und kontrovers informierender Quellen – weit verbreiteter 

Konsum von Propaganda. 

Privatsphäre? Veränderung (zwischenmenschlicher) Kommunikation? 

Naïver Glaube an die Objektivität von Algorithmen 

… und Ranglisten, die Vermessung und Quantifizierung des Lebens: China plant 

das Social Credit System einzuführen. 

Doomsday-Szenarien 

Kommt die Singularität? Wenn ja: Garten Eden oder Hölle?
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Doomsday-Videos to watch

Google's Geoffrey Hinton - "There's no reason to think computers won't get much 

smarter than us” (10 mins): https://www.youtube.com/watch?v=p6lM3bh-npg 

Demis Hassabis, CEO, DeepMind Technologies - The Theory of Everything 

(16 mins): https://www.youtube.com/watch?v=rbsqaJwpu6A 

Nick Bostrom, What happens when our computers get smarter than we are? 

(17 mins): https://www.ted.com/talks/
nick_bostrom_what_happens_when_our_computers_get_smarter_than_we_are 

Why Elon Musk is worried about artificial intelligence (3 mins) 
https://www.youtube.com/watch?v=US95slMMQis

https://www.youtube.com/watch?v=rbsqaJwpu6A
https://www.ted.com/talks/nick_bostrom_what_happens_when_our_computers_get_smarter_than_we_are
https://www.ted.com/talks/nick_bostrom_what_happens_when_our_computers_get_smarter_than_we_are
https://www.youtube.com/watch?v=US95slMMQis
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